
42 The Delphi Magazine Issue 49

Beating The System:
When Worlds Collide
Delphi 5 versus common controls...
by Dave Jewell

For a few months now, I’ve been
planning to do an article on

some of the interesting new
capabilities in recent versions of
Microsoft’s Common Controls
DLL, COMCTL32.DLL. For example,
ever since version 4.70, it’s been
possible to incorporate custom
drawing capabilities into tree
views, header controls and so
forth. Borland seemed rather slow
off the mark at exploiting these
new features within the various
VCL common control ‘wrappers’,
so I figured that I’d steal a march on
them and do the job myself. Alas,
too late! Those bounders from
Scotts Valley have beaten me to it
by adding custom draw support to
the Delphi 5 versions of TTreeView,
TToolbar and TListView. I figured
there was nothing for it but to
swallow my pride and describe the
new goodies that the latest version
of Delphi brings to the party.

Well, that was the theory, but as I
worked on this article, I found
myself getting increasingly frus-
trated with the way in which the
custom draw capabilities have
been implemented. This is a

problem which, primarily, relates
to the way in which Microsoft have
implemented the underlying
custom draw architecture. How-
ever, let’s get positive for a while!
I’ll save the bad news until later...

Heading Up The
Pack With THeaderControl
You don’t need much familiarity
with Windows Explorer before you
notice that, in the Details view, it’s
possible to grab hold of one of the
column headings in the header
control and then drag it to a new
position, thus rearranging the
order in which columns are
displayed (see Figure 1). As you
drag a column header, a grey
outline of the header follows the
mouse around, and a thick blue
line appears between adjacent
column headers to indicate where
the ‘floating’ header would be
inserted if the mouse button was
released at that point.

Before I became aware of all the
new features in COMCTL32.DLL, I
reckoned that Microsoft were
using a custom version of the
header control in Explorer, but this

isn’t the case, it’s just
a matter of enabling
the capability in the
standard control. In
Delphi 5, the THeader-
Control control has a
new property, Drag-
Reorder, which takes
care of this function-
ality. Assuming that
you set DragReorder
to True, a new event,
OnSectionDrag, then
comes into play. This
event is fired only
when the mouse
button is released,
and has a function
prototype like this:

type TSectionDragEvent =
procedure (Sender: TObject;
Section: THeaderSection;
var AllowDrag: Boolean)
of object;

The AllowDrag argument can be
used to specify whether or not the
drag is allowed. Because this event
handler also receives a reference
to the header section which is
being dragged (the Section argu-
ment) you can use it to enable or
disable dragging on a per-column
basis. This would be particularly
appropriate if you wanted, for
example, the left-most column to
remain where it was, only allowing
the user to reconfigure the other
columns.

Although this is all good stuff, I
would like to have seen another
event which enables you to track a
section drag during the drag opera-
tion rather than merely firing the
event at the end. If this event han-
dler were supplied with the appro-
priate arguments, it would be
possible to replace the thick blue
‘it’ll-go-here’ indicator with your
own custom highlighter, such as
those cute lime green arrows used
by Developer Express in their
TdxTreeList control. (In recent ver-
sions of TdxTreeList, they don’t
have to be lime green any more,
you can have shocking pink if you
prefer!) Because there’s no simple
way of participating in a column
drag, it isn’t possible to make
non-standard things happen
during the drag. However, on the
positive side, because OnDragEvent
is fired after the drag operation,
it’s the perfect place for an applica-
tion to retrieve the current order
of columns at this point, writing
the information to a .INI file or the
registry so as to make the user’s
choice persistent.

As in previous versions of
Delphi, it’s possible to set the
Style property of individual sec-
tions to hsOwnerDraw, whereupon it
becomes possible to use the
OnDrawSection event to take full
responsibility for the drawing of a
particular column header. How-
ever, this is overkill if all you want
to do is draw a predefined image
alongside the caption of each

➤ Figure 1: Windows Explorer is an example of a
Microsoft program that allows you to reorder
columns simply by dragging from one place to
another. The new DragReorder property in
THeaderControl makes it easy to do the same.

September 1999 The Delphi Magazine 43

column header. Accordingly, the
Delphi 5 implementation of
THeaderControl introduces a new
property, Images, which you point
to an existing TImageList compo-
nent on the same form. Once this is
done, you can set the individual
ImageIndex properties of each sec-
tion so as to reference the desired
image within the image list. You
should use this feature with some
care, because if you use overlarge
bitmaps, you could end up making
your header control look much like
an Internet Explorer style toolbar,
which would doubtless cause
some confusion to users of your
application!

Emulating Outlook Express...
A better approach is to use the
image capability in a discreet,
tasteful manner. For example,
many modern programs, while dis-
playing a detail view in a listview
control, will re-sort the view on a
particular column when that
column header is clicked, the Win-
dows Explorer being an example of
such an application. Some pro-
grams, such as Outlook Express,
will display a small down-pointing
or up-pointing arrow to indicate
which column is responsible for
sort order, and whether it’s an
ascending or descending sort.

Using the new Images property in
conjunction with ImageIndex, this is
now very straightforward to
achieve.

An example implementation is
given in Listing 1 and you can see
the corresponding demo program
running in Figure 2. This demo is
designed to emulate the look and
feel of Outlook Express, at least as
far as the behaviour of the
THeaderControl is concerned! In
fact, I shamelessly extracted the
Outlook Express toolbar bitmaps
from Microsoft’s MSOERES.DLL file
(the various resources used by the
program) and stuffed them into a
Delphi image-list! I then set up the
various ImageIndex properties as
described above in order to get the
effect shown. You’ll also notice
that I set the DragReorder property

to True, because Outlook Express
allows full column reordering.

The real business end of the
demo code is the OnSectionClick
event handler which is called
whenever a section header gets
clicked. Firstly, it examines the
ImageIndex and Text properties of
the clicked section in order to
determine which section actually
got clicked on. The result is stored
as a variable of type TSortOrder for
subsequent passing to a routine
which will do the actual sorting.
Next, the code examines the
clicked section to see if it is already
displaying a sort marker. If so, then
the marker is ‘toggled’ from
ascending to descending sort, or
vice versa. If there’s no previous
marker shown, then it defaults to
an ascending sort which, again,

➤ Figure 2: Outlook Express, or is it? Well, it isn't of course, but the
new Image property makes it possible to associate a small glyph
with each section header. With a little extra code (see Listing 1) you
can even have 'toggling' sort markers.

unit OEDemoForm;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ImgList, ComCtrls, ExtCtrls;

type
TSortOrder = (soPriority, soAttachment, soFlag, soFrom,

soSubject, soReceived);
TForm1 = class(TForm)
ToolbarImages: TImageList;
Panel1: TPanel;
Header: THeaderControl;
ListView1: TListView;
procedure HeaderSectionClick(HeaderControl:
THeaderControl; Section: THeaderSection);

private
procedure SortMessages (Order: TSortOrder; Ascending:
Boolean);

public
end;

var Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.HeaderSectionClick (HeaderControl:
THeaderControl; Section: THeaderSection);

var
Idx: Integer;
Sec: THeaderSection;
SortAscending: Boolean;
SortOrder: TSortOrder;

begin
// Just to shut the compiler up!
SortOrder := soReceived; SortAscending := True;
with Section do begin
// Firstly, figure out which section this is.

if ImageIndex = 4 then
SortOrder := soPriority

else if ImageIndex = 5 then
SortOrder := soAttachment

else if ImageIndex = 33 then
SortOrder := soFlag

else if Text = 'From' then
SortOrder := soFrom

else if Text = 'Subject' then
SortOrder := soSubject

else if Text = 'Received' then
SortOrder := soReceived;

// redisplay sort marker according to selected section
if Text <> '' then begin
if ImageIndex = -1 then
SortAscending := True

else
SortAscending := ImageIndex = 2;

ImageIndex := 2 + Ord(SortAscending);
end;
// Next, remove sort marker from any other columns
for Idx := 0 to Header.Sections.Count - 1 do begin
Sec := Header.Sections [Idx];
if (Sec<>Section) and (Sec.ImageIndex in [2,3]) then
Sec.ImageIndex := -1;

end;
// Finally, the sort !
SortMessages (SortOrder, SortAscending);

end;
end;
procedure TForm1.SortMessages (Order: TSortOrder;
Ascending: Boolean);

begin
// An exercise for the reader....

end;
end.

➤ Listing 1

44 The Delphi Magazine Issue 49

emulates the behaviour of
Microsoft’s code.

The next job is to remove the
sort marker (if any) from other sec-
tions. Since we can only sort on one
column at a time, we need to
ensure that only one column
header displays a sort marker.
Finally, the SortMessages routine is
called to perform the actual sort,
the implementation of which is left
as an exercise for the reader. Be
fair, this article is about new
common control features, not
about how to write an email or
newsgroup reader!

Incidentally, you might be think-
ing that I’ve used a rather round-
about way of determining which
section header got clicked on. If
you are familiar with the
THeaderControl, you’re probably
wondering why I don’t just look at
the ID property of the Section argu-
ment passed to the OnSectionClick
handler? That would certainly
work in this simple case, irrespec-
tive of runtime reordering, but you
should realise that in a more com-
plex program like Outlook Express,
the user has the option not only of
rearranging columns, but also of
deciding which columns are visi-
ble. It might be possible to still use
the ID property in such circum-
stances, but you’d probably want
another TCollection in which to
store the ‘off screen’ items. I
decided to adopt the approach
used here because it also makes
the code relatively independent of
changes to the VCL wrapper layer.

Finally, you’ll notice that the
little up/down sorting markers
don’t appear in exactly the same
positions as they do in Outlook
Express. Outlook places the glyphs
after the section text, which has
the advantage that the text doesn’t
shuffle up and down when the
glyph appears or disappears. If you
want your header to look just like
the Microsoft offering, and you
don’t want to centre or right-align
the section text, then you’ll need to
use owner draw to draw the con-
tents of each column header.

The complete code is included
on this month’s companion disk.
You’ll also find a ‘packaged’ EXE
file which will only run if you’ve got

the file VCL50.BPL. Since I’ve only
got a pre-release version of Delphi
5 at the moment, there’s a possibil-
ity that you may need to rebuild
the EXE for compatibility with the
shipping version of the VCL50
package.

Redmond Strikes Again!
If you take a look at the various
events surfaced by the new Delphi
5 implementations of TTreeView,
TListView and TToolbar, you might
be forgiven for thinking that
Borland have taken leave of their
senses. The familiar OnCustomDraw
event has now been joined by
another called OnAdvancedCustom-
Draw. Perhaps in Delphi 6, we
should look forward to the intro-
duction of an OnReallyReally-
AdvancedCustomDraw event?

Predictably, the real culprit here
is Microsoft, and those API design-
ers at Redmond who have such a
talent for extending the API in ways
that would make a grown man cry.
In order to understand precisely
why a new custom draw mecha-
nism was added, it’s instructive to
review the development of custom
draw support in Windows con-
trols. So let’s forget about Delphi
and the VCL library for a minute
and consider things from an API
perspective.

The traditional custom-draw
mechanism, (actually called owner
draw) requires that you create a
control using a specific style bit
which tells Windows, in advance,
that you want to make use of the
owner draw facility. At the API
level, controls are ultimately cre-
ated through a call to CreateWindow
or CreateWindowEx, both of which
take a style parameter that’s made
up of a series of style bit flags.
Thus, if you wanted to create an
owner draw listbox, you’d specify
the LBS_OWNERDRAW style at the time
the listbox was created. Your appli-
cation would then receive
WM_DRAWITEM messages every time
that Windows wants to draw a
listbox item. You’d examine the
WM_DRAWITEM message, make sure
it’s been sent by the listbox (it
might have been sent by another
owner draw control) and then
draw whatever you wish onto the

device context passed as part of
the message.

This, incidentally, is the key
reason why (as I’ve often stated)
Visual Basic can’t implement
owner draw listboxes. The lParam
argument received in the
WM_DRAWITEMmessage is a pointer to
an important data structure, and
because VB doesn’t understand
pointers, everything collapses like
a pack of cards. If you want an
owner draw listbox in Visual Basic,
you’ve really got to use a third
party DLL or OCX to help with the
meaty stuff.

The big problem with the tradi-
tional owner-draw approach is
that it represents something of an
all-or-nothing approach. If you
want to draw the contents of a
listbox item using the
LBS_OWNERDRAWITEM mechanism,
then you have to draw the entire
item, including the background of
the item rectangle, the item text,
and of course any extra glyphs that
you wish to display. Although this
gives you maximum flexibility, it’s
inconvenient if you simply want to
(for example) change the font used
to display a selected item (but see
my later comment on this!).

The newer custom draw mech-
anism uses a somewhat different
approach. With custom draw, the
control periodically sends NM_CUS-
TOMDRAW notification messages at
crucial points during a drawing
operation. Because these are noti-
fication messages, they are
‘piggy-backed’ onto a WM_NOTIFY
message in the usual way. Custom
draw is currently implemented (at
the API level) for header controls,
track-bars, rebars, tool-tips, as
well as listviews, toolbars and tree
view controls. However, Delphi 5
only surfaces the custom draw
functionality for the last three
named control types, so we won’t
concern ourselves with the others
here.

In addition to the above, the
custom draw mechanism intro-
duces the concept of a ‘paint
cycle’. This means that notifica-
tion mechanisms are potentially
sent at up to four different times as
follows: immediately before paint-
ing the control, immediately after

September 1999 The Delphi Magazine 45

painting the control, immediately
before erasing the control, and
immediately after erasing the
control.

If you think about it, this makes
some sense: getting in on the act
before painting allows you to select
different fonts (for example) into
the control’s device context
whereas getting in on the act after
painting allows you to overlay
additional graphics on top of what-
ever the control itself has drawn.
Similarly, getting control before
and after erasing allows you to
replace the background of the con-
trol with some non-standard back-
ground, or else overlay additional
information onto the control’s
background area. At least, that’s
the theory.

The above four stages are
referred to in the Microsoft docu-
mentation as ‘global draw stages’,
and apply to the control as a whole,
rather than to any specific item.
The Microsoft API documentation
uses a modifier bit flag to introduce
an additional set of draw stages
that apply to items. In other words:

immediately before painting an
item, immediately after painting an
item, immediately before erasing
an item, and immediately after
erasing an item.

In the Borland VCL wrappers,
the item-specific drawing is split
off into a separate event handler,
as we shall see.

Into The Abyss
So let’s take a look at what’s been
added to the Delphi 5 implementa-
tion of TToolBar. If you examine the
Events page in the Property Inspec-
tor, you’ll find the following new
events lurking, none of which are
present in the Delphi 4 wrapper:

OnCustomDraw
OnCustomDrawButton
OnAdvancedCustomDraw
OnAdvancedCustomDrawButton

The OnCustomDraw event is specifi-
cally for painting the background
image of the toolbar. So, if you want
to do something as simple as using
a non-standard bitmap for the
toolbar background, you can do it

as easily as the code shown in
Listing 2. This assumes that we’ve
already got a TBitmap variable
called Clouds and will produce
something like the effect shown in
Figure 3. In fact, you can reduce the
code to a one-liner if you’re sure
that your background bitmap is
always going to be larger than the
toolbar rectangle, in which case
you can dispense with the bitmap
tiling code. You’ll also notice that I
haven’t touched the value of the
DefaultDraw argument. By default
this is set to True, which is almost
certainly what you want. The docu-
mentation is vague on this subject
but if you set it to False, the but-
tons in your toolbar will disappear,
which is almost certainly what you
don’t want!

The OnCustomDrawButton routine
enables you to control the way in
which individual toolbar buttons
are drawn. Like the OnCustomDraw
routine, it has a DefaultDraw
parameter which is Trueby default.
While I was playing around with
this routine, I happened to dis-
cover that the mere act of adding a

46 The Delphi Magazine Issue 49

do-nothing OnCustomDrawButton
routine (ie, an event handler con-
taining nothing more than a com-
ment, so as to prevent the IDE from
auto-deleting it) was enough to
cause the toolbar buttons to lose
their raised 3D borders. Compare
Figures 3 and Figure 4 to see what I
mean. Initially, I thought this was
due to a bug in the VCL wrapper,
but having examined the VCL
source code, it’s clear that the
wrapper returns different informa-
tion to the API according to
whether or not the application pro-
gram has assigned to the various
custom draw event handlers. This
doesn’t seem to be a terribly clean
way of doing things, but given
Microsoft’s somewhat idiosyn-
cratic approach here, perhaps this
was the only option.

For the technically curious, the
problem here is that the API wants
to know ‘up-front’ what message
notifications an application wishes
to achieve. Thus, when a
CDDS_PREPAINT notification code is
received (see the Windows SDK
documentation for more details)
the application is expected to
respond by indicating whether it
wants to receive post-paint notifi-
cations, post-erase and item draw
notifications. The only way the
VCL can reasonably determine this
is by checking to see whether the
various custom draw event han-
dlers are assigned. It obviously
can’t distinguish between a ‘real’
event handler and one that does
nothing.

Things get even messier when
we look at the tree-view and
listview controls. Suppose I’ve got
a listview control and I want to
draw the currently selected item
using a non-standard colour such

procedure TForm1.ToolBar1CustomDraw (Sender: TToolBar; const ARect: TRect;
var DefaultDraw: Boolean);

var
X, Y: Integer;

begin
Y := ARect.Top;
// Tile the bitmap over the toolbar
while Y < ARect.Bottom do begin
X := ARect.Left;
while X < ARect.Right do begin
Sender.Canvas.Draw (X, Y, Clouds);
Inc (X, Clouds.Width);

end;
Inc (Y, Clouds.Height);

end;
end;

➤ Listing 2

➤ Figure 3: It's equally easy to add a background image to a toolbar
using the OnCustomDraw event, but if you try to get much more
ambitious than this, you'll end up grappling with the API…

➤ Figure 4: The mere act of adding an empty OnCustomDrawButton
handler will radically affect the appearance of the toolbar buttons,
even though, strictly speaking, they should look just the same as
Figure 3 at this point.

as red. Doesn’t exactly sound like
rocket science, does it? Naively, I
tried adding the code in Listing 3 to
a OnCustomDrawItem handler.

This produced the result shown
in Figure 5. As you can see, the two
sub-items have been correctly
drawn in red, but the item itself has
been drawn using the default high-
light colour, which isn’t what we
want. If you try making use of the
newer OnAdvancedCustomDrawItem
event handler, or even the snappily
named OnAdvancedCustomDrawSub-
Item, you’ll get the same result.

So what is going wrong? The key
to the problem is the fact that the
two sub-items are being correctly
drawn, whereas the selected item
is not. The code inside
COMCTL32.DLL will attempt to draw
the selected item using the default
highlight colour (which in this case
is navy blue) irrespective of the
change we made to the Canvas
property. The two sub-items, on
the other hand, wouldn’t normally
be part of the ‘selection bar’
anyway, and consequently they
are drawn using the colour that we
specified.

To put things another way, the
selected item isn’t being drawn the
way we want simply because, iron-
ically, it is the selected item! If it
wasn’t selected, we could draw it
anyway we like, but because it is
selected, the common controls
code will ignore the background
colour and draw it the way it
believes selected items should be
drawn.

From this, you’ll maybe guess
that there is a workaround. If
we could simply fool the
COMCTL32.DLL code into thinking
that the item isn’t selected (even
though it is) then it would draw the
item using the background colour
we specify which, in effect, is the
new selection colour for this
control.

The bad news is that the
workaround is only accessible at
the API level. The C code snippet in
Listing 4 is taken from a recent
newsgroup message which illus-
trates how easy it would be to fix
the problem if we were coding at
the API level.

Well, you get the idea. Because
these data structures are directly
accessible to the API-level pro-
grammer, he/she can easily side-
step a problem which is a right
royal pain in VCL land.

Conclusions
Perhaps you’re surprised to hear
me talking in this way? As you
know, I’m a great fan of Delphi, and
a staunch supporter of the VCL
framework. Almost always, VCL

September 1999 The Delphi Magazine 47

programming is far simpler and
more enjoyable than would be the
case with MFC or straight API level
programming. Almost always: but
not always. Borland have a great
talent for taking awkward API
programming interfaces and sim-
plifying them while adding extra
power and flexibility. But when the
underlying architecture is as
messed up as this, there are limits
to what even Borland can do.

After spending the last couple of
days grappling with the vagaries of
Microsoft’s custom draw scheme,
and wading through the cries for
help in the various API-related
newsgroups, I’m forced to the con-
clusion that the software giant has
really excelled itself this time in
terms of bad API design. Unfortu-
nately, the problems are made
worse for VCL developers (both
Delphi and C++Builder) because
we are abstracted further away
from the underlying API messages
and data structures. An unpleasant
but quick ‘tweak’ like the one I
discussed above becomes difficult,
if not impossible, when you’ve got

20,000 lines of COMCTRLS.PAS inter-
posed between you and the API.

In case you think I’m over-stating
the case here, let me just refer you
to a comment I made earlier when I
introduced the new custom draw
mechanism. I stated that the tradi-
tional owner draw mechanism
gave maximum flexibility but was
inconvenient if you simply wanted
to change the font of a selected
item. Ironically, after writing that, I
discovered that ‘Custom draw does
not allow you to change the font
attributes for selected items’ (taken
from the MSDN introduction to
owner draw). So the bottom line is

that, even when used at the API
level, custom draw won’t let you
do such a simple thing as changing
the font of the selected item, and it
will even fight you for trying to
change the background colour of
the selected item! Amazing! How’s
that for state of the art user inter-
face design?

Ok, clever clogs, so how would I
implement custom draw? At the
VCL level, I’d like to simply be able
to set a TPicture property as the
background image of a control. I’d
like to see separate event handlers
for OnDrawControlBackground, On-
DrawItemBackground and so forth.

procedure TForm1.ListView1CustomDrawItem(Sender: TCustomListView;
Item: TListItem;
State: TCustomDrawState;
var DefaultDraw: Boolean);

begin
if cdsSelected in State then Sender.Canvas.Brush.Color := clRed;

end;

➤ Above: Listing 3 ➤ Below: Listing 4

case CDDS_ITEMPREPAINT:
// We only want to change things for the selected items
if (pCustom->>nmcd.uItemState & CDIS_SELECTED) {
// Change the background color to deep red.
pCustom->>clrTextBk = RGB(255,0,0);
pCustom->>nmcd.uItemState &= ~CDIS_SELECTED;

}

48 The Delphi Magazine Issue 49

Rather than worrying about
pre-paint versus post-paint, pre-
erase versus post-erase, the only
issue should be whether you do
your own custom stuff before or
after you call Inherited. What I’m
really arguing for is a much more
elegant implementation of custom
draw, rather than compromising
the inherent elegance of the VCL
library by surfacing Microsoft’s
underlying API klunkiness as part
of the VCL programming interface.
If Borland want to port the VCL
across to Linux as part of the ongo-
ing ‘Delphi for Linux’ project, they
would do well to avoid sacrificing
the VCL’s elegance on the altar of
Microsoft’s increasingly terminally
broken API.

Now, some folks will argue that
it’s impossible to build an elegant
programming interface on top of
an inelegant can of worms. Borland
have done pretty well with the rest
of the Windows API, but it may well
be the case that what I’m asking for
here isn’t practical. If so, can I
gently suggest that Borland point
their web browsers at www.
teemach.com and take a leaf out of
David Berneda’s book? The excel-
lent TeeChart and TeeTree con-
trols simply run rings around

➤ Figure 6: You want a tree view? Now that's a tree-view! David
Berneda's excellent TeeTree utility is an excellent example of the sort
of flexible, native VCL control that I want to see more of, rather than
grappling with the brain-dead COMCTL32 library. And yes, TeeTree
can look a lot more conventional, if you want it to.

➤ Figure 5: Problems also arise when we try something as simple as
changing the highlight colour of a list-view item. How about a
property called HighlightColor? If only life were that simple.

Microsoft’s treeview and listview
components, simply because
they’re not limited by the under-
powered, badly designed
COMCTL32.DLL. What we need are a
few more native VCL controls of
this calibre, rather than trying to
provide support for something
which, to be blunt, really ought to
be put out of its misery.

Even if Borland don’t feel moti-
vated to do so, recent initiatives
such as the excellent Wine project
(www.winehq.com) have provided
an impetus which, I’ve no doubt,
will bring forth an increasing
number of alternatives to
Microsoft’s controls over the next

year or so. And again, I’ve no doubt
that many of these alternatives will
be written using native VCL code. If
these developers are careful to use
the Windows API as little as possi-
ble, then there’s a good chance
that these controls will be easily
portable to other platforms as
Borland’s ‘Delphi for Linux’ and
other VCL-based systems become
available. COMCTL32.DLL is dead.
Long live the revolution!

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can email Dave at
TechEditor@itecuk.com

	Heading Up The Pack With THeaderControl
	Emulating Outlook Express...
	Redmond Strikes Again!
	Into The Abyss
	Conclusions

